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ABSTRACT
This paper introducesWireless IoT-basedNoise Cancellation (WINC)
which defines a framework for leveraging a wireless network of
IoT microphones to enhance active noise cancellation in noise-
canceling headphones. The IoT microphones forward ambient noise
to the headphone over the wireless link which travels a million
times faster than sound and gives the headphone a future lookahead
into the incoming noise. While leveraging wireless lookahead has
been explored in past work, prior systems are limited to a single
noise source. WINC, however, can simultaneously cancel multiple
noise sources by using a network of IoT nodes. Scaling wireless
lookahead aware noise cancellation is non-trivial because the com-
putational and protocol delays can defeat the purpose of leveraging
wireless lookahead. WINC introduces a novel algorithm that oper-
ates in the frequency domain to efficiently cancel multiple noise
sources. We implement and evaluate WINC to show that it can
cancel three noise sources and outperforms past work and state-
of-the-art headphones without requiring completely blocking the
users’ ears.

CCS CONCEPTS
• Networks→ Sensor networks; • Human-centered comput-
ing→ Ubiquitous and mobile computing systems and tools; •
Hardware→ Digital signal processing; Sound-based input / output.

KEYWORDS
Multi-source Noise Cancellation, Active Noise Cancellation, Acous-
tics, Internet of Things, Edge Computing, Frequency Domain Adap-
tive Filter, Earable
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1 INTRODUCTION
Noise cancellation is becoming ever more necessary as our work
and living environments are becoming saturated with noise pol-
lution. Long-term exposure to high-level ambient noise can lead
to numerous health problems like high blood pressure, heart dis-
eases, sleep disorders, stress, as well as cognitive impairment in
children [24]. In fact, according to the World Health Organization,
noise is the second-largest environmental cause of health prob-
lems, just after air pollution [1]. Besides, emerging applications like
VR need noise cancellation to provide an acoustically immersive
experience.

Today’s solution for noise cancellation is to use over-the-ear
headphones or tight blocking earphones like the Bose NC700 [6],
the Sony WH1000XM4 [26], or the Apple AirPod Max [4]. These
headphones use a technique known as ANC (Active Noise Cancella-
tion) where a reference microphone (also known as the feedforward
microphone) is placed on the outer shell of the headphone to record
the ambient noise, which is then passed through a filter to create
an anti-noise signal. This anti-noise sound is played by a speaker
inside the headphone and interferes destructively with the ambient
noise to cancel it out at the ear drum. This design, however, suffers
from two major limitations. First, since the reference microphone
is so close to the ear, the digital processor has very limited time
before the noise reaches the ear drum (≈ 30𝜇s [20]) to compute and
generate the proper anti-noise signal, which results in imperfect
cancellation at low frequencies and almost no cancellation at high
frequencies because they vary quickly.1

Besides, a single reference microphone is not able to resolve
and cancel noises coming from multiple sources located in different
directions, and that is why some latest noise-cancelling headphones
like Bose NC700 [6] and Apple AirPod Max [4] are equipped with
multiple reference microphones. However, as we prove in Sec. 4.2,
simply adding more reference microphones to the headphone is
suboptimal. This is because the reference microphones confined in a
small area on the headphone capture very similar mixtures of noises
and provide little extra information as opposed to a single reference
microphone. Therefore, the ANC system is not able to isolate the

1Noise-cancelling headphones like Bose, Sony, and Apple deal with this by sealing the
ear completely with sound absorbing material.
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noise sources and generate anti-noise signals corresponding to each
noise source. In order to take full advantage of the spatial diversity
of the reference microphones, we move the reference microphones
away from the headphone and disperse them in the environment,
so the reference mics are far apart from each other. The remote
reference mics use a wireless IoT network to forward captured
noise signals to the headphone through wireless links.

In addition to improving the spatial diversity, moving reference
microphones away from the headphone also allows the ANC system
to look ahead into the future for the incoming noise samples to
predict more accurate anti-noise signals. This is possible because the
wireless reference microphones in the environment are closer to the
noise sources, and they forward the captured noise samples through
wirelss links at the speed of light to the headphone, which is almost
a million times faster than the speed of sound. Therefore, the ANC
system can access the reference signals much earlier than when the
acoustic noise reaches the headphone. We refer to the resulting time
difference as the future lookahead. It provides the ANC system with
much more time to process and generate the anti-noise signal, so as
to achieve better cancellation. Past work, MUTE [20], has tried to
leverage the lookahead and demonstrated better noise cancellation
compared to COTS ANC headphones especially for high-frequency
noises. However, MUTE [20] is limited to a single noise source
and a single reference microphone. It would not work in practical
settings with multiple noise sources.

In this paper, we present WINC (Wireless IoT-based Noise Can-
cellation) where we scale LANC (Lookahead Active Noise Cancel-
lation) to multiple noise sources by using a network of wireless
IoT microphones scattered in the environment to capture ambient
noises from various locations and forward them to the noise can-
celling headphone. By using𝑀 referencemicrophonesWINC is able
to cancel𝑀 noise signals while fully benefiting from the look-ahead
time provided by the wireless relays. This scaling, however, is not as
trivial as replicating MUTE [20]. First, each reference microphone
does not necessarily capture only one noise source but can capture
noise from multiple sources at a time making it harder to disentan-
gle these noise signals. Moreover, depending on the locations of the
noise sources and the references mics, different sources will exhibit
different look-ahead times. Hence, there is not a single consistent
look-ahead time for all noise sources that allows us to know how
much extra computation time we have to compute and generate the
anti-noise signal. Furthermore, canceling𝑀 noise sources requires
𝑀× more computation which increases the processing delay and
reduces the advantage of having a look-ahead time. Besides, LANC
has drawbacks of increased computation complexity and slower
convergence rate of the adaptive filter. Finally, on the networking
front, we must ensure that the wireless network does not add any
processing or medium access delays that counteract the benefit of
having a look-ahead time by using wireless.

To address the above issues and scale to multiple noise sources,
WINC tackles the problem of efficiently generating the anti-noise
signal in the frequency domain. Processing the anti-noise signal in
the frequency domain naturally decomposes the long time-domain
anti-noise filter with many parameters into multiple independent
sub-problems at different frequencies. This decomposition can sig-
nificantly speed up the convergence of the iterative anti-noise filter
estimation. Besides, common everyday noises do not have constant
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Figure 1: Conventional ANC system overview with one noise source.

energy across all frequencies, and the multiple noise sources can
exhibit very different power spectra. Therefore, operating in the
frequency domain allows us to adjust the amount of computation
on each frequency based on the amount of energy that needs to be
canceled. In this way, we can achieve better cancellation with less
computation. Last but not least, operating in the frequency domain
also enables frequency-selective noise cancellation, that can be used
for tuning and customizing the noise cancellation function based
on the user’s preference and hearing ability (e.g., some users are
more sensitive to certain frequencies than others). Although the
high-level idea of WINCmay seem as simple as a time-to-frequency
conversion, translating it into a practical solution requires careful
algorithmic and system design which we introduce in detail in
section 5.

For the wireless IoT microphone network, WINC avoids digital
wireless modulations and protocols like Bluetooth,WiFi, Zigbee, etc,
because they introduce latencies for processing and medium access,
that can significant reduce the lookahead time budget and defeat the
purpose of using wireless IoT relays. Therefore, WINC uses analog
frequency modulation (FM) as the wireless modulation scheme for
the IoTs, which is the standard for COTS wireless microphones.
Besides, different IoT radios are frequency-division multiplexed to
allow multiple IoT nodes to transmit and simultaneously forward
the reference noise signal.

We built a prototype of WINC and tested it in different environ-
ments with up to 3 noise sources. Our results show:

• WINC outperforms the active noise cancellation on Bose
headphones by 15dB to 28dB and the overall cancellation by
blocking the ear by around 9dB. Note that WINC does not
require blocking the ear.
• When cancelling multiple noise sources, WINC outperforms
the state-of-the-art prior work MUTE [20] by 16dB to 27dB.
Even after extending MUTE [20] to have multiple reference
microphones, WINC still achieves 7dB to 14dB better me-
dian cancellation on all frequencies and by around 15dB on
frequencies above 1000Hz.
• Due to spatial diversity, WINC achieves 7 dB better median
cancellation on all frequencies with three noise sources by
dispersing three reference microphones with 3-meter range
between each, compared to that with 0.5-meter range.

111



WINC: A Wireless IoT Network for Multi-Noise Source Cancellation IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

2 PRIMER
2.1 Active Noise Cancellation
A typical active noise cancellation (ANC) systems, as illustrated in
Fig. 1, consists four components:

(1) A reference microphone capturing noise signals that are used
as feed-forward reference signals in the ANC algorithm.

(2) Digital signal processing (DSP) unit running the ANC algo-
rithm to compute the anti-noise signal.

(3) Anti-noise speaker playing anti-noise signal to cancel the
noise signal at the user’s ear-drum.

(4) Error microphone monitoring residual noise close to the
ear-drum and provide feedback to the ANC algorithm.

2.2 Adaptive Filtering Algorithm for ANC
State-of-the-art ANC headphones today use an adaptive filtering
based algorithm for active noise cancellation. We describe the algo-
rithm here with a simple example considering a single noise source
and one reference microphone. Suppose noise signal 𝑛(𝑡) arrives at
the error mic through channel ℎ𝑛𝑒 (𝑡), so the received noise signal
𝑎(𝑡) at the error mic is:

𝑎(𝑡) = 𝑛(𝑡) ∗ ℎ𝑛𝑒 (𝑡) (1)

In order to cancel 𝑎(𝑡) at the error mic, the ANC utilizes the
signal 𝑟 (𝑡) recorded by the reference mic 𝑀𝑟 , which is the same
noise source 𝑛(𝑡) but having passed through a different channel
ℎ𝑛𝑟 (𝑡). Hence, the signal 𝑟 (𝑡) at the reference mic is

𝑟 (𝑡) = 𝑛(𝑡) ∗ ℎ𝑛𝑟 (𝑡) (2)

At the DSP, the reference signal 𝑟 (𝑡) is passed through a fil-
ter with filter response𝑤 (𝑡), which is then sent to the anti-noise
speaker. Next, the anti-noise speaker plays the processed sound
𝑟 (𝑡) ∗𝑤 (𝑡) and the resultant anti-noise that reaches the human ear
will be:

𝑏 (𝑡) = 𝑟 (𝑡) ∗𝑤 (𝑡) ∗ ℎ𝑠𝑒 (𝑡)
= 𝑛(𝑡) ∗ ℎ𝑛𝑟 (𝑡) ∗𝑤 (𝑡) ∗ ℎ𝑠𝑒 (𝑡)

(3)

Thus, the overall signal received by the error mic placed at the
human ear is 𝑒 (𝑡) = 𝑎(𝑡) + 𝑏 (𝑡). Substituting Eq. 3 and Eq. 1, we
get:

𝑒 (𝑡) = ℎ𝑛𝑒 (𝑡) ∗ 𝑛(𝑡) + ℎ𝑛𝑟 (𝑡) ∗𝑤 (𝑡) ∗ ℎ𝑠𝑒 (𝑡) ∗ 𝑛(𝑡) (4)

To get perfect noise cancellation, we need 𝑒 (𝑡) = 0. Hence, the
goal is to find a filter response𝑤 (𝑡) such that 𝑒 (𝑡) is as close to 0 as
possible. Hence, from Eq. 4, we can see that𝑤 (𝑡) should be set to:

𝑤𝑖𝑑𝑒𝑎𝑙 (𝑡) = −ℎ−1𝑛𝑟 (𝑡) ∗ ℎ𝑛𝑒 (𝑡) ∗ ℎ−1𝑠𝑒 (𝑡) (5)

Therefore, for perfect noise cancellation, ANC needs to estimate
all 3 channels to obtain to the optimal 𝑤 (𝑡). However, this is not
easy to obtain because: (1) computing the inverse channel requires
future samples for precise estimation, and (2) the channels are
continuously varying over time so ANC needs to keep re-estimating
the channel constantly.

So instead of trying to estimate the precise channels (closed
form solution), ANC resorts to an adaptive filtering solution that
tries to directly optimize 𝑤 (𝑡) from the error signal 𝑒 (𝑡). That

Reference
Microphone

Noise
Source

Error
Mic

DSP

Acoustic Channel Wireless Link Circuit

WINC Headphone

Anti-Noise
Speaker

Figure 2: System Overview of WINC’s Multi-Noise Source Multi-
Reference ANC Over Wireless IoT Networks.

is, adaptive filtering tries to find the solution to the optimization
problem, defined as:

min
𝑤

𝑒 (𝑡)2 (6)

Adaptive filtering techniques use gradient descent optimization
tools to find the solution to the above problem, i.e. adjusting the
values of the vector𝑤 (𝑡) in the direction in which the residual error
𝑒 (𝑡) reduces the fastest.

𝑤 (𝜏) ← 𝑤 (𝜏) − 𝛼

2
𝜕𝑒2 (𝑡)
𝜕𝑤 (𝜏)

𝜕𝑒2 (𝑡)
𝜕𝑤 (𝜏) = 2𝑒 (𝑡) (ℎ𝑠𝑒 (𝑡) ∗ 𝑟 (𝑡 − 𝜏))

(7)

ANC continues the above optimization until convergence and
the resulting 𝑤 (𝑡) obtained is then used for computing the anti-
noise signal. This is the basic principle behind the ANC technique
used in most commercial devices today. With this background, we
will now go deeper into the design of WINC, and explain how we
extend it to multiple noise sources, as well as improve its cancella-
tion performance by leveraging adaptive filtering in the frequency
domain.

3 SYSTEM OVERVIEW
WINC aims to scale ANC to multiple noise sources in the environ-
ment, leveraging a wireless IoT network, as illustrated in Fig. 2. It
moves the reference microphones from the ANC headphone (Fig. 1)
to multiple wireless IoT-based microphone relays. The IoT-based
reference microphones capture noise signals from multiple sources
(the blue and red curves) at various locations and forward them to
the WINC headphone over the wireless link. TheWINC headphone
computes and plays the anti-noise signal (the dotted curves) using
the anti-noise speaker to cancel the multi-noise source. The residual
noise (the purple curves) is recorded by the error microphone and
used to update the anti-noise generating parameters. It is important
to emphasize that the reference microphones are not necessarily
deployed close to any certain noise source, so in general, each ref-
erence signal is a combination of multiple noises. In this way, we
not only increase the number of reference microphones, but also
introduce spatial diversity and look-ahead to the reference signals,
which are the keys to scaling ANC to multiple noise sources. We de-
scribe the spatial diversity and look-ahead in more detail in Sec. 4.2
and Sec. 4.3 respectively.

112



IPSN ’23, May 09–12, 2023, San Antonio, TX, USA Ishani Janveja, Jiaming Wang, Junfeng Guan, Suraj Jog, and Haitham Hassanieh

Apart from these, we also jointly innovate the adaptive filtering-
based ANC algorithm and the formulation of the feedback error sig-
nal to improve the cancellation performance over multiple different
noise sources. Instead of maintaining and updating all time-domain
filters using a single time-domain error term, we decompose the
error term to multiple orthogonal frequency bins in the frequency
domain and update each frequency of the filters separately. We de-
scribe our frequency-domain adaptive filtering algorithm and how
it leverages the frequency-domain error signal to achieve faster
convergence in Sec. 5.

4 NETWORKED MULTI-SOURCE LANC
In this section, we first highlight how multi-noise source multi-
reference ANC fundamentally differs from single-noise source
single-reference ANC (in Sec. 2.2). We model the optimization prob-
lem and provide an ideal as well as an iterative solution to the
problem. Following this is the discussion on how WINC leverages
the network of microphones to provide channel diversity (Sec. 4.2)
and increase lookahead (Sec. 4.3). These are the key contributors to
WINC’s performance gains over the existing state-of-the-art noise
cancelling systems.

4.1 Problem Modeling
Leveraging multiple reference microphones to cancel multiple noise
sources is not as trivial as replicating the single-reference ANC
algorithm multiple times for each pair of noise source and reference
mic. It entails several challenges.

First, each reference mic does not receive signals from only
a single noise source. In fact, depending on the deployment of
the reference mics and the locations of the noise sources, each
reference mic captures a unique combination of noise signals from
multiple sources travelling through different acoustic channels.
This is known as the "cross-talk" effect.

Moreover, the multiple noise sources are at random unknown
locations, so the resulting geometric relations between the noise
sources, reference mics, and the user are unpredictable. One cannot
assume that every reference signal contains lookahead correspond-
ing to all noise signals. Some noise signals may reach the error
mic even before they arrive at some of the reference mics. Every
reference signal will also contain different amounts of lookahead
with respect to different noise sources, and some of the lookahead
can even be negative, or delayed. Therefore, without knowing the
acoustic channel between all noise sources and all reference mics,
one cannot decide which reference signal to use for canceling which
noise signal.

In addition to the reference signals where multiple noise sources
are inseparable, the residual noises from all sources also sum up at
the error microphone and become entangled. Therefore, one cannot
perfectly isolate the error signal components corresponding to each
noise source or reference signal either. Hence, the multi-source
ANC algorithm has to utilize a common error signal as feedback to
update the filters for every reference signal.

Because of the multi-source entanglement in both reference and
error signals, we have to jointly cancel all noise signals using all
reference signals and a cumulative error signal. Figure 3 illustrates
WINC’s systemmodel using𝑀 referencemics to generate anti-noise
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Figure 3: System model with 𝑁 noise sources and𝑀 reference mics.
Each reference signal 𝑟 𝑗 will be processed by a corresponding filter 𝑤𝑗 in
the DSP, then the resultants are summed up and played by the anti-noise
speaker to cancel the noise 𝑛𝑖 that directly hits the error mics. The residual
error 𝑒 is used to update the filters 𝑤𝑗 .

and cancel 𝑁 noise sources at the error mic. With each reference
signal processed by an ANC filter 𝑤 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑀 , the error
signal can be modeled as:

𝑒 (𝑡) =
𝑁∑︁
𝑖=1

𝑛𝑖 (𝑡) ∗ ℎ (𝑖 )𝑛𝑒 (𝑡) +
©­«
𝑀∑︁
𝑗=1

𝑟 𝑗 (𝑡) ∗𝑤 𝑗 (𝑡)ª®¬ ∗ ℎ𝑠𝑒 (𝑡)
=

𝑁∑︁
𝑖=1

𝑛𝑖 (𝑡) ∗ ©­«ℎ (𝑖 )𝑛𝑒 (𝑡) + ℎ𝑠𝑒 (𝑡) ∗
𝑀∑︁
𝑗=1

ℎ
(𝑖 𝑗 )
𝑛𝑟 (𝑡) ∗𝑤 𝑗 (𝑡)ª®¬

(8)

The ideal solution to achieve perfect cancellation (𝑒 (𝑡) = 0) is
the solution of the following equation set, which is independent of
the unknown noise signals 𝑛𝑖 (𝑡).

ℎ
(𝑖 )
𝑛𝑒 (𝑡) + ℎ𝑠𝑒 (𝑡) ∗

𝑀∑︁
𝑗=1

ℎ
(𝑖 𝑗 )
𝑛𝑟 (𝑡) ∗𝑤 𝑗 (𝑡) = 0; 𝑖 = 1, . . . , 𝑁 (9)

From Eq. 9, we can infer that the optimal filter for reference mic
𝑗 alone, i.e.,𝑤 𝑗 (𝑡), will depend on all the channel values between
every noise source and every mic in the system. This means that
all the ANC filters will jointly cancel all the noise sources, as op-
posed to every filter being responsible for cancelling a particular
noise source independently. However, solving Eq. 9 is impracti-
cal since the acoustic channels between the noise source and any
microphone (both ℎ

(𝑖 )
𝑛𝑒 (𝑡) and ℎ

(𝑖 𝑗 )
𝑛𝑟 (𝑡)) can vary and hence can-

not be pre-estimated. Instead, the problem is solved through an
optimization formulation as follows:

min
𝑤𝑗 (𝑡 ), 𝑗=1,...,𝑀

𝑒2 (𝑡) (10)

Thus, the optimal filters𝑤 𝑗 (𝑡) for thismulti-source, multi-reference
ANC can be found using adaptive filtering algorithm as follows:

𝑤 𝑗 (𝜏) ← 𝑤 𝑗 (𝜏) −
𝛼

2
𝜕𝑒2 (𝑡)
𝜕𝑤 𝑗 (𝜏)

𝜕𝑒2 (𝑡)
𝜕𝑤 𝑗 (𝜏)

= 2𝑒 (𝑡)
(
ℎ𝑠𝑒 (𝑡) ∗ 𝑟 𝑗 (𝑡 − 𝜏)

) (11)

The iterative solution Eq. 11 is dependent on two variables: (1)
𝑒 (𝑡) and 𝑟 𝑗 (𝑡) are captured in real time; and (2) ℎ𝑠𝑒 (𝑡) can be es-
timated during the initialization of the system and barely varies.
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This forms the basis of WINC’s multi-source noise cancellation
algorithm.

4.2 Channel Diversity
Although WINC and some COTS ANC headphones with multiple
reference mics follow the same multi-noise source multi-reference
system model, the locations of reference mics make a huge dif-
ference. WINC’s reference microphones are dispersed in the en-
vironment, and the spatial diversity of the reference mics allow
WINC to leverage an opportunity known as the channel diversity.
In an environment with multipath reflections, the difference in
the channel response is usually closely related to the location of
the device. Statistically, the closer the receivers are to each other,
the more similar their channel responses will be. Such an effect
has been well studied in the wireless MIMO communication area,
where spatial multiplexing of multiple streams highly relies on the
channel difference between pair transmitter and receiver antennas.
This is the reason why in MIMO theory, the farther apart we spread
the transmitter or receiver antennas, the better performance we
achieve due to the spatial diversity gain. This phenomenon also
carries over to the acoustic modality.

Eq. 9 defines the condition for the multi-source ANC system to
achieve perfect cancellation. As a linear equation set, Eq. 9 has a so-
lution (i.e., consistent) when the number of independent equations
is fewer than or equal to the number of independent variables. Oth-
erwise, Eq. 9 is inconsistent and has no solution, which means that
wemay not find a set of filters that can perfectly cancel any noise sig-
nals. In this model, the number of independent equations/variables
are decided by the following factors:

• The number of independent equations is determined by the loca-
tions of the noise sources. Noise sources at the same location can
be treated as one as they have identical channelsℎ (𝑖 )𝑛𝑒 andℎ (𝑖 𝑗 )𝑛𝑟 ,∀𝑗 .
In this case, the number of independent equations reduces and
the problem becomes easier to solve.
• The number of independent variables is determined by the lo-
cations of reference mics. Reference mics at the same location
have the same channel ℎ (𝑖 𝑗 )𝑛𝑟 ,∀𝑖 , and hence, can also be combined.
In this case, the system reduces to one with fewer reference
mics, and the problem becomes harder to solve because of fewer
independent variables. Similarly, partially dependent variables
(close-by reference mics with similar channel) will degrade the
convergence of the adaptive filtering as well, particularly un-
der the influence of hardware noise. This is what we refer to as
channel diversity.
• The consistency of Eq. 9 also depends on the channel between
the anti-noise speaker and the error mic ℎ𝑠𝑒 . However, in most
applications, the anti-noise speaker and error mic are at fixed
locations in the headphone, resulting in a fixed ℎ𝑠𝑒 . Therefore,
we lessen its influence here.

Conventional ANC headphones cannot fully leverage the potential
spatial diversity gains from multiple reference mics, because the
location of the on-headphone reference mics are confined by the
size of the headphone, which is only around 20 cm (half wavelength
of 850 Hz). The confined size of these headphones largely limits the
channel diversity gain we can potentially achieve by adding more

mics. On the contrary, WINC has the freedom to disperse reference
mics all around the environment, which can provide much better
channel diversity for the ANC system and improve performance of
noise cancellation with multiple noise sources.

4.3 Lookahead
In addition to the channel diversity gain, the wireless reference
microphones provide a peek into the noise signal that enables the
ANC system look-ahead to the samples much earlier than when
they reach the user. Lookahead-aware ANC (LANC) systems have
two-fold benefit: (i) extra time budget for processing the anti-noise
signal, (ii) better estimation of the non-causal inverse-channel in
the adaptive filter (shown in Eq. 5). Therefore, LANC can achieve
much better cancellation than conventional ANC headphones [20].

By deploying the reference mics on wireless IoT relays instead of
the outer shell of the ANC headphone, WINC is able to move some
of the reference mics closer to the noise sources, which reduces the
propagation time between these two. Then the IoT relays equipped
with wireless transmitters forward the reference signals to the
ANC headphone over a wireless link with minimum delay. Because
wireless (RF) signals propagate much faster than acoustic signals
in air, the relayed reference signals arrive much earlier in time to
the DSP unit on the ANC headphone compared to the conventional
design on the ANC headphones. This provides the ANC algorithm
with significantly more time to process and compute the anti-noise
signal, before the corresponding noise hits the eardrum.

Lookahead can also improve the noise cancellation performance
by allowing the ANC algorithm to utilize future noise signal samples
to estimate the non-causal inverse channel. The reason can be
explained from the perspective of either the ideal solution or the
iterative solution. On one hand, as can be seen from Eq. 5, the
ideal anti-noise generating filter𝑤 (𝑡) should be an inverse of the
channelℎ𝑠𝑒 (𝑡) andℎ𝑛𝑟 (𝑡), which means𝑤 (𝑡) is non-causal (𝑤 (𝜏) ≠
0, ∃𝜏 < 0) with large probability. So, the ideal anti-signal should be
dependent not only on past noise signals, but also on future ones. On
the other, from the iterative solution in Sec. 2, we can see that Eq. 7
contains the term 𝑟 (𝑡 − 𝜏) in the gradient computation, implying
that the update step in the gradient descent optimization requires
future samples of the reference signal 𝑟 (𝑡 − 𝜏), (𝜏 < 0). Hence,
as we see more future reference samples, the more accurate non-
causal filter𝑤 (𝑡) we can estimate. In conclusion, the cancellation
performance is largely decided by how many "future" samples the
reference mics can capture, or in other words, how much lookahead
can we obtain from the wireless IoT relays.

5 FREQUENCY-DOMAIN ADAPTIVE
FILTERING

Although noise cancellation using wireless IoT provides many-fold
benefits, it is a double-edged sword. The improved noise cancella-
tion performance is at the cost of more computation complexity
and slower convergence rate of the adaptive filtering algorithm.
In this section, we explain these unique challenges caused by the
lookahead in the reference signal and present our solution to this
challenge through the frequency-domain adaptive filtering opti-
mization technique.
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5.1 Convergence Challenge of LANC
According to Sec. 4.1, to jointly cancel 𝑁 noise sources using 𝑀

reference signals, WINC’s adaptive filtering needs to update𝑀 × 𝐿
parameters, where 𝐿 is the number of taps in each anti-noise filter.
As shown in Eq. 5, the ideal anti-noise filter ANC tries to estimate is
ℎ−1𝑛𝑟 ∗ℎ𝑛𝑒 ∗ℎ−1𝑠𝑒 . Given that the channel from the anti-noise speaker
to the error microphone ℎ𝑠𝑒 is fixed, ℎ−1𝑠𝑒 is constant. Therefore,
the number of anti-noise filter taps 𝐿 is determined by ℎ−1𝑛𝑟 ∗ ℎ𝑛𝑒 ,
in other words, the difference between ℎ𝑛𝑟 and ℎ𝑛𝑒 . With more
lookahead in the reference signal, the distance between ℎ𝑛𝑟 and
ℎ𝑛𝑒 becomes larger, which leads to a larger number of taps 𝐿 in the
anti-noise filter.

To explain this more clearly, let us consider a simple example
where every acoustic channel is just a simple delay channel (no
attenuation or multipath), i.e., ℎ(𝑡) = 𝛿 (𝑡 − 𝜏) where 𝛿 (𝑡) is a unit
impulse and 𝜏 represents the propagation delay between the noise
source and the microphone. For more simplicity, we can assume
that channel between the anti-noise speaker and the error mic is
ℎ𝑠𝑒 (𝑡) = 𝛿 (𝑡). Thus, for single-noise-single-reference scenario, the
ideal anti-noise filter can be derived using Eq. 5:

𝑤𝑖𝑑𝑒𝑎𝑙 (𝑡) = −ℎ−1𝑛𝑟 (𝑡) ∗ ℎ𝑛𝑒 (𝑡) ∗ ℎ−1𝑠𝑒 (𝑡)
= −𝛿−1 (𝑡 − 𝜏𝑛𝑟 ) ∗ 𝛿 (𝑡 − 𝜏𝑛𝑒 ) ∗ 𝛿−1 (𝑡)
= −𝛿 (𝑡 − (𝜏𝑛𝑒 − 𝜏𝑛𝑟 ))

(12)

We define 𝜏Δ ≜ 𝜏𝑛𝑒 − 𝜏𝑛𝑟 and assume 𝜏Δ ≥ 0. 2 Notice that the
length 𝐿 of the anti-noise filter𝑤 (𝑡) has to be at least longer than
𝜏Δ so that the propagation delay induced by the channel can be
captured accurately and hence the anti-noise be generated properly
to cancel the environmental noise. Because the locations of the
noise sources are unknown in practice, the ANC system has to use
an anti-noise filter that is long enough to cover any possible value
of 𝜏Δ. Therefore, the minimum 𝐿 is equal to the acoustic propagation
delay between the reference mic and the error mic, which corresponds
to the condition when the noise source, the reference mic, and the
error mic lie on the same line.

Compared to conventional ANC headphones, where the refer-
ence microphone and error microphone are very close to each other,
the distance between the reference mic and the error mic in a LANC
systems is much longer. Therefore, the anti-noise filters for LANC
systems also need a lot more taps than those of ANC headphones
to achieve reasonable cancellation performance.

Past work like MUTE [20] have to cope with this increased com-
putational burden to leverage the benefits of look-ahead. However,
MUTE is limited to a single noise source and reference mic, so
it only needs to estimate one anti-noise filter with 𝐿 taps. Issues
arise when trying to scale such a system to cancel multiple noise
sources at a time, since we now need to add multiple reference
mics (1, . . . , 𝑀), and in turn our optimization problem now needs
to optimize for𝑀 × 𝐿 parameters.

Moreover, the large amount of variables are strongly dependent
on each other. Although we scale the number of reference mics to

2Here, the assumption is required when all channels are simple delay channel. Other-
wise, the reference mic barely contributes to the cancellation of this noise source, since
it receives the noise later than the error mic. But in practice, such reference mics are
also useful considering multipath effect, and adaptive filter can automatically assign
suitable filter values.
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Figure 4: Detailed DSP overview with frequency domain algorithm.
The algorithm first performs FFT of all input signals 𝑟 𝑗 (𝑡 ) and 𝑒 (𝑡 ) , which is
processed by the frequency domain filter𝑊𝑗 (𝑓 ) to construct the anti-noise
signal. After this, the anti-noise 𝐵0 (𝑓 ) is converted back to time domain
𝑏0 (𝑡 ) and sent out by the anti-noise speaker.

empower channel diversity, the system is still limited to a single
error mic on the headphone and hence, single feedback signal. As
shown in Eq. 11, at every time step, a single error mic sample is
used to update all 𝑀 anti-noise filters with 𝐿 taps. It is direct to
see that the gradient of𝑤 𝑗 (𝑡) is a function of the error signal 𝑒 (𝑡),
which is a resultant of all antinoise filters (Eq. 8). Trying to solve
the entire large optimization problem with all 𝑀 × 𝐿 parameters
would be extremely unstable from an optimization point of view,
and getting the gradient descent to converge to the optimal solu-
tion is extremely hard when the problem has a large amount of
interdependent variables.

Hence, although time-domain adaptive filtering can work reason-
ably well for ANC headphones and single-source-single-reference
LANC (e.g., MUTE), the time-domain approach cannot scale for
multi-noise source multi-reference LANC due to the long conver-
gence time.

5.2 Frequency Domain Optimization:
Independent Sub-Problems

To overcome the convergence challenge of multi-source multi-
reference LANC, we try to decompose the large optimization prob-
lem into multiple sub-problems with fewer parameters each. Be-
sides, we incorporate signal processing knowledge into this op-
timization decomposition to come up with a frequency-domain
adaptive filtering solution. Decomposition is a popular strategy in
solving optimization problems, and a good division of optimization
problems should meet the requirements that: (1) the sub problems
are independent and can be solved individually; (2) the solution to
the original problem can be constructed from the solutions to each
sub problem.

The natural orthogonality property of DFT helps decompose the
optimization problem.WINC uses DFT to convert time-domain con-
volutions into frequency-domain multiplications and thus achieves
the independence of the parameters in each frequency bin. Operat-
ing in the frequency domain allows us to parallelize the adaptive
filtering algorithm since we can optimize the error corresponding
to each frequency bin separately.
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In the frequency domain, the error at each frequency bin 𝑓 can
be represented as:

𝐸 (𝑓 ) =
𝑁∑︁
𝑖=1

𝑁 𝑗 (𝑓 )𝐻 (𝑖 )𝑛𝑒 (𝑓 ) +
𝑀∑︁
𝑗=1

𝑅 𝑗 (𝑓 )𝐻𝑠𝑒 (𝑓 )𝑊𝑗 (𝑓 )

for each frequency 𝑓

(13)

The optimization of the sub-problem for each frequency bin can
then be formulated as:

min
𝑊𝑗 (𝑓 ), 𝑗=1,...,𝑀

|𝐸 (𝑓 ) |2 (14)

The adaptive filter taps can now be calculated in parallel at each
frequency to minimize the error at that frequency.

𝑊𝑗 (𝑓 ) ←𝑊𝑗 (𝑓 ) − 𝛼 𝑗𝐸𝐻 (𝑓 )𝑅 𝑗 (𝑓 )𝐻𝑠𝑒 (𝑓 ) (15)

WINC divides the time-domain optimization problem Eq. 10
(with 𝑀𝐿 variables) into 𝐿 independent frequency-domain prob-
lems Eq. 14 (with𝑀 variables each). This greatly reduces the num-
ber of interacting taps from 𝑀𝐿 to 𝑀 , thus making the problem
parallelizable and improving the convergence of adaptive filtering.

It is proved that Eq. 14 keeps a convex loss function (see proof
in Appx. A), so global optimum is guaranteed and is able to recon-
struct the optimum of Eq. 10. Moreover, since the proof does not
make any assumption of the channels between any noise source
and any mic, the convexity holds when any source or any mic
moves. Hence, the frequency domain adaptive filtering is feasible
in dynamic environments.

5.3 Power Adaptive Step Size
Converting the time domain optimization to frequency domain
untangles the dependency between the anti-noise filter taps and
divides the optimization into 𝐿 independent sub-problems with𝑀

variables each. The reduced dependence can be further leveraged
to improve the convergence rate of the adaptive filter by assigning
each filter tap (corresponding to a frequency bin) a different step
size. To also keep it robust to sudden variations in signal power at a
particular frequency, these independent step sizes should be adap-
tive. Thus, in WINC we use adaptive step size for each frequency:

𝑊𝑗 (𝑓 ) ←𝑊𝑗 (𝑓 ) − 𝜇 𝑗 (𝑓 )𝐸𝐻 (𝑓 )𝑅 𝑗 (𝑓 )𝐻𝑠𝑒 (𝑓 ) (16)

Here 𝜇 𝑗 (𝑓 ) is the adaptive step size for 𝑗𝑡ℎ filter, and is given by:

𝜇 𝑗 (𝑓 ) =
𝛼 𝑗 (𝑓 )
𝑃 𝑗 (𝑓 )

(17)

In Eq. 17, 𝛼 𝑗 (𝑓 ) is a constant and 𝑃 𝑗 (𝑓 ) is the measure of mean
power in this specific frequency bin of the reference signal. The
core intuition behind scaling the step size inversely relative to the
reference signal power is that when there is a sudden variation in
the input reference signal, the fixed step size may cause a large
variation in the anti-noise filter and thus a sudden increase in error,
which may lead to an unstable state in the sub-optimization. On the
other-hand, for frequencies with lower power, this adaptive step
size leads to faster convergence. Figure 8b in Sec. 7.3 demonstrates
the gains in convergence rate that we achieve in WINC with this
power adaptive step size.

Algorithm 1 WINC: Wireless IoT-based Noise Cancellation

1: Initialization Phase:
2: Play 𝑛𝑠 at anti-noise speaker.
3: 𝑁𝑠 ← 𝐹𝐹𝑇 {𝑛𝑠 } ⊲ All FFT are on the latest 𝐿 samples
4: Record 𝑒𝑠 at error mic.
5: 𝐸𝑠 ← 𝐹𝐹𝑇 {𝑒𝑠 }
6: for 𝑓 = 1, 𝑓 ≤ 𝐿, 𝑓 + + do
7: 𝐻𝑠𝑒 (𝑓 ) ← 𝐸𝑠 (𝑓 )

𝑁𝑠 (𝑓 )
8: for 𝑗 = 1, 𝑗 ≤ 𝑀, 𝑗 + + do
9: 𝑊𝑗 (𝑓 ) ← 0
10: end for
11: end for
12: Noise Cancellation Phase:
13: while True do
14: Record the error 𝑒 (𝑡) at error mic.
15: Record the reference 𝑟 𝑗 (𝑡) at M reference mics.
16: 𝐸 ← 𝐹𝐹𝑇 {𝑒}
17: for 𝑓 = 1, 𝑓 ≤ 𝐿, 𝑓 + + do
18: for 𝑗 = 1, 𝑗 ≤ 𝑀, 𝑗 + + do
19: 𝑅 𝑗 ← 𝐹𝐹𝑇 {𝑟 𝑗 }
20: 𝑃 𝑗 (𝑓 ) ← 𝑅𝐻

𝑗
(𝑓 )𝑅 𝑗 (𝑓 )

21: 𝜇 𝑗 (𝑓 ) ←
𝛼 𝑗 (𝑓 )
𝑃 𝑗 (𝑓 )

22: 𝑊𝑗 (𝑓 ) ←𝑊𝑗 (𝑓 ) − 𝜇 𝑗 (𝑓 )𝐸𝐻𝑗 (𝑓 )𝑅 𝑗 (𝑓 )𝐻𝑠𝑒 (𝑓 )
23: end for
24: 𝐵0 (𝑓 ) ←

∑𝑀
𝑗=1𝑊𝑗 (𝑓 )𝑅 𝑗 (𝑓 )

25: end for
26: 𝑏0 ← 𝐼𝐹𝐹𝑇 {𝐵0}
27: Play 𝑏0 (𝑡) at anti-noise speaker.
28: 𝑡 ← 𝑡 + 1
29: end while

5.4 Bridging Time Domain Measurements to
Frequency Domain Adaptive Filtering

The workflow of WINC is divided into two phases: initialization
and noise cancellation. In the initialization phase, the anti-noise
speaker plays a training sequence 𝑠 [𝑛], while the error mic records
the sound to compute the channel ℎ𝑠𝑒 . The following error needs
to be minimized in order to obtain a good estimate of ℎ𝑠𝑒 :

𝑒𝑟𝑟𝑜𝑟 [𝑛] = 𝑒 [𝑛] + ℎ
′
𝑠𝑒 [𝑛] ∗ 𝑠 [𝑛]

= ℎ𝑠𝑒 [𝑛] ∗ 𝑠 [𝑛] + ℎ
′
𝑠𝑒 [𝑛] ∗ 𝑠 [𝑛]

(18)

𝑒 [𝑛] is the error mic sample at the 𝑛𝑡ℎ instant. The training se-
quence 𝑠 [𝑛] is a known random noise, and ℎ𝑠𝑒 is an adaptive filter
that uses LMS to adjust its values and thereby minimize the error.
Therefore, as the estimate ℎ

′
𝑠𝑒 of the antinoise speaker to error

mic channel approaches close to its ideal value ℎ𝑠𝑒 , 𝑒𝑟𝑟𝑜𝑟 [𝑛] be-
comes negligible. This helps WINC estimate the antinoise speaker
to error mic channel at a wide band of frequencies used during
our experiments (1-3kHz). The known random sequence is played
for 10 seconds. to let the error converge and filter values remain
stable for sufficient time. Such computation is only an one-time
operation, since the channel remains almost the same as a resultant
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as a person’s ear shape. Due to the convexity of the problem, all
anti-noise filter taps are initialized as zeros for simplicity.

In the noise cancellation phase (Fig. 4), WINC first computes
DFT over the new mic sample and the latest 𝐿 − 1 (𝐿 >= 1024)
samples of each signal, which will be used to update the anti-noise
filter values with gradient Eq. 15. Then, the reference signals are
passed through the anti-noise filters and summed up to get each
frequency component of the anti-noise. Finally, IDFT is performed
to get the time-domain anti-noise signal, which is played by the
anti-noise speaker. The loop repeats for the next set of signals.

Although WINC requires computing frequency components for
every new sample, the computation remains the same as the time
domain algorithm. Typically, DFT can be implemented in the sliding
window manner (e.g. STFT), which uses the result in the previous
window to generate the new one. Besides, IDFT only needs to
compute the last sample. Thus, the complexity remains as𝑂 (𝐿) per
anti-noise sample, which is no more than the time-domain adaptive
filtering. A detailed sample-by-sample pseudocode is shown in
Alg. 1, and WINC can also be implemented in a block-by-block
manner keeping the same computational complexity per sample.

6 SYSTEM IMPLEMENTATION
Wireless Relay: Similar to most wireless microphone systems,
WINC’s wireless relays use analog FM modulation, even though
compared to digital modulations analog FM suffers more from dis-
tortions. This is because digital modulations require sampling the
audio signal at the IoT relays using Analog-to-Digital converters
(ADCs) and then converting the digital audio data back to analog
acoustic signals at the receiver of the WINC processor. This addi-
tional round of analog-to-digital and digital-to-analog conversions
introduces significant latency, reducing the amount of lookahead
we can obtain from the wireless relaying. Multiple wireless IoT
relays are frequency-division multiplexed (FDM) on different fre-
quency channels, so they can simultaneously forward the reference
signals to the headphone. Note that the number of FDM channels
only depends on the number of IoT relays, because all users can
subscribe to all the FDM channels and receive from all reference
microphones. In our experimental setup, we implement the wireless
IoT relays and the wireless receiver on the WINC headphone using
two sets of Gem Sound wireless microphone systems [27].

WINC Headphone: Figure 5 shows our experimental hardware
setup for the WINC headphone, which consists of a wireless re-
ceiver module, a DSP unit along with the anti-noise speaker and
error microphones. The wireless receiver module demodulates the
reference signals forwarded by the IoT relays over the wireless
channel. We use TI K2G DSP + ARM processor [12] evaluation
module with an audio daughter card. TI K2G supports simultane-
ous multi-channel audio input and output, with up to 8 analog input
channels and 16 analog output channels, which is lacking in most
off-the-shelf development DSP boards. In our experiments, the K2G
processor takes three analog reference audio signals and the error
signals as inputs and outputs the anti-noise audio signals.

Limitations of our hardware: A key challenge in enabling multi-
source cancellation with multiple reference microphones is the

Figure 5: Hardware setup of WINC headphone

processing capability of the DSP unit on the headphone. It is re-
quired to sample all the reference signals from the reference mi-
crophones, estimate the adaptive filters associated with each ref-
erence mic accurately, and generate the antinoise signal within
the time budget provided by the lookahead. To sample reference
signals, the ADCs/DACs should be able to support sampling fre-
quencies of up to 44kHz. To generate accurate antinoise signal, we
use single-precision floating point format for the adaptive filter
weights. Therefore, the DSP should be equipped with memory that
can support 32-bit data. Most importantly, the DSP has to be able
to continuously update an adaptive filter with at least 1000 taps for
every reference microphone, because a typical acoustic channel in
a room has many delayed echoes and requires at least 1000 taps for
suitable accuracy. However, the general-purpose ARM-based DSP
board we use in our experimental setup is not optimized for audio
applications and runs a real-time OS to support multiple other tasks
and routines onboard. As a consequence, we were limited to a total
of 600 filter taps at a sampling rate of 6.3kHz, which is further di-
vided among multiple adaptive filters. This huge gap in the number
of filter taps leads to degradation in cancellation performance.

Emulating Hardware: Due to computational limitation of our
experimental hardware, we evaluated our system using emulations
where we are not limited by the hardware computation capability
or delays introduced by slow hardware and are able to thoroughly
evaluate the performance of our system. We carefully design our
emulations to keep them as close to real-time experiments as pos-
sible. Here, we synchronously record the reference and error mic
signals. However, instead of performing cancellation in real time,
we save these signals and run our cancellation algorithm offline.
Note that the reference and error mic recordings also encode real-
world channels. The only difference is the absence of antinoise
speaker to error mic channel (ℎ𝑠𝑒 ). We also account for this channel
in our emulations by estimating ℎ𝑠𝑒 online and convolving the anti-
noise samples with this channel in the emulations. Also observe
that the error microphone samples cannot be used as is to update
the adaptive filters in emulations. In real-time noise cancellation,
the error microphone hears residual as the noise and antinoise
signals interfere destructively. Therefore, in the emulations, the
resultant error 𝑒′ is calculated by summing up the recorded error
mic samples and the estimated antinoise samples. To sum up, the
offline algorithm first performs FFT of all recorded reference mic
signals 𝑟 𝑗 (𝑡) which is processed by the frequency domain filters
𝑊𝑗 (𝑓 ) to construct the anti-noise signal. After this, the anti-noise
𝐵0 (𝑓 ) is converted back to time domain 𝑏0 (𝑡) and convolved with
channel ℎ𝑠𝑒 . The resultant anti-noise signal 𝑏

′
0 is summed up with
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the recorded error mic signal e(t) to give the effective error 𝑒′ which
is used to derive the new estimate of adaptive filters. Similar to
online processing on a DSP (Fig. 4), this emulation runs for each
time step 𝑡 .

The results presented in the next section are obtained through
these emulated experiments.

7 EXPERIMENTAL EVALUATION
In this section, we first explain our evaluation metrics and baselines,
and then we present the main results that compare the overall noise
cancellation performance of WINC against some state-of-the-art
baselines. After that, we demonstrate some micro-benchmarks re-
sults that verify and highlight each contributor ofWINC’s improved
noise cancellation performance. Finally, we show an extended func-
tion of WINC due to the use of frequency-domain adaptive filtering.

7.1 Evaluation Design
We conduct controlled experiments in indoor environments using
portable speakers placed at various locations to play pre-recorded
noise signals. This allows us to control the number and locations
of the noise sources, as well as the noise signal parameters such
as frequency spectrum, volume, etc. Specifically, the performance
of WINC has been tested in two different kinds of environments -
a conference room and a general laboratory space. We varied the
distance of the reference microphones with respect to the error
microphones by placing them 50cm, 1.5m and 3m away across differ-
ent experiments to test performance with different levels of spatial
diversity. Lastly, we also vary the location of the noise sources in
our experiments to vary the acoustic channels. Each noise signal
always has at least one reference microphone that provides a pos-
itive lookahead. We test WINC in the presence of up to 3 noise
sources, which is typical in indoor spaces. The noise sources and
all microphones remain stationary throughout the experiment.

Noise Signals: We use three different types of noise signals to
evaluate the system.

• Gaussian: We primarily use white Gaussian noise (WGN) sig-
nals covering the entire spectrum from 0 Hz to 3 kHz. These
frequencies are well within the range of everyday sounds such
as low rumbling from motorized devices to high pitched bird
chirps from outside. Moreover, we wish to evaluate our system
for wideband noise since it is the hardest to design ANC systems
that do so.
• Human Voices: In addition to WGN noise, we also use recordings
of most commonly found real-world noises as the noise signals.
The first type of such real-world noise signal is human voices, for
which we have separated audio clip for male and female talking.
• Construction Site Noise: The other type of commonly found everyday
noise signal that we use in our experiments are construction site
noises from heavy machinery.

Baselines:We compare WINC against four baselines:

• COTS ANC Headphone Overall: We compare WINC against one
of the most popular commercial off-the-shelf (COTS) noise can-
celing headphone - Bose QC 35. It follows the standard ANC

system architecture with a single reference microphone on the
outer shell of the headphone.
• COTS ANC Headphone without Passive Blockage: Although COTS
headphones can provide reasonably good noise cancellation, it
heavily relies on the passive isolation of the earcups. To focus on
the ANC algorithm performance, we try to decouple the contri-
bution of the passive isolation. To do so, we measure the noise
cancellation of the COTS headphone twicewith the ANC function
turned on and off (only passive isolation). Then we compute the
cancellation difference, which provides us with the cancellation
performance of ANC algorithm alone in COTS headphones.
• MUTE [20]: We also compare our system against state-of-the-art
LANC prior work, i.e., MUTE [20], which uses the standard time-
domain adaptive filtering solution. Specifically, MUTE has only
one reference microphone.
• WINC (time domain):We also evaluate the performance difference
due to the time-domain and frequency-domain adaptive filtering
algorithm. Therefore, we skip DFT/IDFT in WINC, and use time-
domain adaptive filtering algorithm for anti-noise filter update.
We refer to this baseline as WINC (time domain).

Metrics: We use the following evaluation metrics throughout our
experiments unless explicitly stated otherwise.

• Noise Cancellation Ratio (in dB): We use the noise cancellation
ratio as the main evaluation metric, because it’s consistent across
all kinds of noises and scenarios. We extract the cancellation ratio
by differentiating the noise signal power at the error microphone
emulating user’s eardrum with and without the cancellation
method under test, using the following equation:

𝑅Cancellation = 20 ∗ 𝑙𝑜𝑔10 (
|error signalwith cancellation |
|error signalwithout cancellation |

)

• Cancellation Across Different Frequencies: In addition to the over-
all cancellation ratio, we are also interested in the cancellation
ratio at different frequencies. Therefore, we perform spectral
analysis of the original and suppressed noise noises by applying
short-time Fourier transform, and then compute the cancellation
ratio for each frequency bin. We also compute the median over
different time windows.

7.2 Main Results
To evaluate the multi-source noise cancellation performance of
our system, we create an environment with three noise sources at
random locations, and we also deploy three IoT relays to cancel the
multi-source noise. We use WINC and the three baseline methods
to cancel the same pre-recorded noises and compare the results.

In the first set of experiments, we use wideband white Gauss-
ian noise as the noise signals, which helps us understand the per-
formance of our system across a wide range of frequencies. The
results are shown in Fig. 6a. First, one can see that median can-
cellation offered by WINC outperforms the COTS ANC baseline
by ∼9 dB across all frequencies, due to the spatial diversity and
limited lookahead. The performance gap is more significant when
we decouple the passive isolation, as the ANC function of COTS
headphone alone is ∼28 dB worse than WINC without the passive
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Figure 6: Cancellation of three noise sources. (a) Wideband Gaussian Noise; (b) Real-world Noise (c) Overall performance.
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Figure 7: (a) Cancellation of three noise sources with increasing # of reference mics. (b) Scaling # of reference microphones with # of sources. (c)
Spatial diversity in IoT relays improves cancellation performance.

isolation. This results confirm that COTS ANC headphones heav-
ily rely on the passive isolation to cancel noises, especially those
in the higher frequencies to make up for the limited lookahead.
Moreover, frequency-domain WINC performs ∼7 dB better on than
time-domain WINC and the gain is more obvious in the higher
frequencies, where WINC can achieve as high as ∼15 dB more can-
cellation than time-domain WINC. This is because the advantages
of WINC’s frequency-domain adaptive filtering are especially pro-
nounced at higher frequencies, since inaccurate filter weights will
lead harm the higher frequencies which are very sensitive to even
small phase offsets.

In the second set of experiments, we compare the performance of
our system against baselines in canceling real-world noise signals,
including female and male talking, as well as construction site
noises. Figure 6b shows the WINC can achieve ∼2 dB, ∼15 dB, and
∼14 dB more average cancellation than the COTS overall, ANC-
alone COTS, and time-domain WINC baselines respectively. These
results echo the same observation that we see in case of wideband
Gaussian noises.

It is worth noting that our system is implemented without any
passive isolation, and we expect the performance of WINC to be
even much better when combining passive isolation and WINC’s
frequency-domain adaptive filtering.

Finally, we also test our system in different locations, microphone
setups and different noise sources to measure our performance
in more diverse scenarios. The cumulative results of cancellation
we get with time-domain WINC versus frequency-domain WINC
are presented in Fig. 6c, where we show the CDFs of the median
cancellation ratio. It can be seen that frequency-domain WINC
achieves a 3.5 dB higher median cancellation than time-domain
WINC.

7.3 Microbenchmarks
We also design the following micro-benchmarks to demonstrate
some key aspects of WINC.

A. Fewer References than Sources: To verify if multi-source
ANC benefits from the number of microphones, we conduct ex-
periments in the presence of 3 noise sources and vary the number
of microphones from 1 to 3. Figure 7a shows that increasing the
number of reference microphones can exponentially improve the
cancellation performance. Such improvement is not obvious when
the number of reference mics is fewer than the number of noise
sources (1 and 2 reference mics), but it shows a great leap when the
reference mics can provide enough channel diversity (3 reference
mics) to separate individual noise signals from their mixture.

B. Equal References and Sources: Next, we conduct experiment
where the number of wireless IoT relays varies along with the
number of noise sources. Figure 7b compares the performance of
WINC cancelling 1/2/3 of noise sources with the same number of
reference mics. In all cases, WINC is able to separate independent
noise signals with adequate reference mics, which theoretically
could achieve perfect cancellation considering no hardware noise.
Thus, the three plots indicate comparable performance.

C. Channel Diversity of Wireless IoT Relays: To quantify the
benefits of spreading out the reference mics (more channel diver-
sity), we evaluate WINC’s performance in a three-source-three-
reference scenario with varying distance among reference mics.
Figure 7c demonstrates the cancellation across frequencies when
the three reference mics are 0.5/1.5/3 meters away from each other.
Cancellation in 1.5-meter case shows minor improvement over that
in 0.5-meter case, which indicates that the mic separation is still
not enough to fully leverage the advantage of 3 reference mics. But
when the distance further grows up to 3 meters, WINC is able to
achieve a median of 7 dB across all frequencies cancelling wide-
band Gaussian noise.

D. Cancellation with different number of taps:
As we have discussed in Sec. 5, the drawback of LANC is the need
to increase the number of adaptive filter taps, which makes time-
domain adaptive filtering hard to converge. To verify the necessity
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Figure 8: (a) Multi-source noise cancellation with an increasing # of adaptive filter taps. (b) Effect of Frequency dependent adaptation rate. (c)
DSP vs Emulated Performance with same number of taps.
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of having sufficient adaptive filter taps, we compare the best can-
cellation achievable with a different number of adaptive filter taps
in Fig. 8a. The cancellation of wide-band Gaussian noise obviously
increases as the number of anti-noise filter taps increases from 128
to 2048. Each doubling of the filter taps leads to a 3-5 dB median
improvement across all frequencies. It seems that such benefit has
not yet reached its limit with longer anti-noise filter.

E. Convergence with adaptive step size: Section 5.3 describes
a power adaptive step-size for each independent frequency bin of
a filter. To demonstrate the benefit of this method, we compare
its performance with a fixed-step-size version. Figure 8b shows
the overall cancellation of the two step sizes as a function of time.
The final cancellation achieved using the power-adaptive step size
is ∼4 dB better compared to that achieved using a fixed step size.
The advantage also can be seen in the convergence rate, where the
solution converges faster to around the optimum with varying step
size. More details are provided in the time trace of frequency-related
performance. Figure 9 shows that the fixed step size may not be
suitable for the noise above 1500 Hz, while adaptive step size can
achieve a much more uniform noise reduction across a wide band.

F. Offline Emulation and Real-Time DSP Comparison: Finally,
we also verify that our offline emulation can faithfully represent
the cancellation performance on the real-time DSP board, so every

result can be replicated with a low-overhead DSP board. Figure 8c
shows that when using 300 anti-noise filter taps, real-time DSP and
offline emulation achieve similar cancellation performance across
the spectrum.

7.4 Frequency Selective Noise Cancellation
In addition to all the benefits we’ve demonstrated throughout the pa-
per, frequency-domain adaptive filtering also allows for frequency-
selective noise cancellation. Users can selectively preserve certain
frequencies while suppressing all the others. This selectivity can be
convenient in everyday lives, for instance, users would like to be
aware if a distant fire alarm goes off in the building. Moreover, be-
cause not everyone are equally sensitive to all frequencies, privately
customized WINC system is able to provide unique user experience
under various scenarios. Figure 10 shows that by setting the step
size for frequencies between 500-800Hz to 0, we can prevent cancel-
ing them out. Thus, WINC can pause updating the anti-noise filter
for a certain frequency when the noise volume is below a threshold
(e.g. human hearing sensitivity curve), which reserves computation
resources for other purposes.

8 RELATEDWORK
The literature in active noise cancellation is extremely rich with
various system implementations and application [3, 5, 8, 13–15, 20,
25, 28, 30]. In this section, we will cover the ones that are most
related to this work in the following aspects: ANC for multiple
noise sources and convergence of adaptive filtering in ANC.

ANC for multiple noise sources: Several works have explored
different ideas on systems employing multiple reference micro-
phones to cope with multiple noise sources. Some of the older
systems such as [16] require pre-estimating the channels between
noise sources and reference microphones and are not suitable to dy-
namic environment. A common lacking in the more recent systems
is that unlike WINC, their system architecture does not leverage
lookahead and spatial diversity. For instance, in [8, 10, 17, 28] the
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reference microphones are placed close to the user which is similar
to standard commercial noise canceling headphones like Bose QC.
They also lack the benefits of using the frequency domain adaptive
filtering algorithm.

A parallel body of work on multi-noise source cancellation using
multiple reference microphones focuses on selecting the appropri-
ate reference signals out of the many obtained through different
mics. [10] deploys multiple microphones around the user and use
the time of arrival to select the best reference signal for cancellation.
In [2], on the other hand, the system removes irrelevant reference
signals based on power spectrum density. More recently, a coher-
ence based method has been applied to select appropriate reference
signals [21, 23]. We believe these reference signal selection algo-
rithms are complementary to our system and can be applied prior to
the frequency domain adaptive filtering. By selecting only a subset
of reference signals to be used as input for the noise cancellation
algorithm, the number of antinoise filters to be optimized can be
reduced, thereby diminishing computational burden on the sys-
tem. Thus, this technique can help WINC to selectively cancel the
dominant noise sources in the environment.

Convergence of adaptive filtering in ANC: Various work have
been done to improve convergence of adaptive filtering in ANC
from multiple aspects, such as modifying the optimization problem
[18, 19], selecting appropriate adaptive step [9, 11], etc. More rele-
vant work is to improve the convergence of ANC by error signal
separation. A theoretical analysis in [7] revealed the slow conver-
gence using one error sample to update all ANC filter taps. Thus,
it uses band-pass filter to split the narrowband noise signals of
pre-known frequencies. [29] introduces cascaded adaptive filtering
to remove unwanted disturbance from the error signal, and [22]
modified the cascaded structure to separate the error signal into
the ones corresponding to each reference signal. However, these
methods add an extra adaptive filters for noise separation, and the
required number of adaptive filters is 2x the number of reference
microphones. WINC differs from prior work in that it uses adaptive
step sizes for the frequency domain filter taps to achieve uniform
cancellation over a wide band of frequencies.

9 DISCUSSION & LIMITATIONS
In this section, we discuss various aspects of WINC and also address
limitations in our current system design.

Scaling WINC: When a new dominant noise source is added,
WINC requires an additional reference microphone to get the best
cancellation performance, as we demonstrate in our experiments
(Fig. 7a). For each additional reference microphone, WINC requires
another wireless relay operating on a designated FM channel to
avoid interference among the relays and from surrounding RF
sources. A new antinoise filter is also required that takes the new
reference signal as input and generates the corresponding antinoise
signal to minimize the error. Therefore, the wireless spectrum us-
age, DSP computation resources, and memory usage scale linearly
with the number of reference microphones.

Cancellation at the eardrum: In this work, all filters are opti-
mized for the residual signal captured by the error mic. However,

since the error mic is placed around the auricle of headphones, the
error signal is different from what a person can hear at eardrums.
[5] places another microphone in the inner-ear to measure the dif-
ference beforehand, which is removed later during cancellation.
Such initialization is required for every individual and even every
usage. Instead, WINC provides the opportunity to encompass the
general hearing sensitivity contour and target at different residual
power in each frequency. This can generally and effectively provide
a more balanced experience to users.

Trade-off amongdiversity, look-ahead and computation:Chan-
nel diversity and look-ahead are the crucial and interacting com-
ponents in WINC. Channel diversity is crucial for multiple-source
noise cancellation, but the diversity provided by each extra refer-
ence microphone is limited by the distance to the error mic (i.e.
look-ahead). Look-ahead is the key technique to compute the non-
causal part of the ANC filter, but longer look-ahead leads to extra
computation load, which has a negative effect on the cancellation.
It is worth to study and find a suitable deployment of reference
microphones to achieve a balance between these factors.

Usability andmobility:Amajor concernwith a system likeWINC
that uses a network of microphones is constraints on usability of
the system. We envision that the system will be deployed in indoor
spaces such as offices and study rooms. With the proliferation of
voice assistants and voice automated smart-homes and spaces, we
believe that such an infrastructure will be readily available and
make our system more accessible to users.

The key requirement for a noise cancelling system to work in
mobile scenarios is that the adaptive antinoise filter should re-
converge within the coherence time to accommodate the change in
the acoustic channels. Since human motion, and hence the induced
change in acoustic channels, is much slower than the speed at
which the DSP board is expected to generate the antinoise samples,
noise cancellation is expected to work in non-stationary scenarios.
However, a short-coming ofWINC aswell as existingwork onmulti-
noise source cancellation is that they are evaluated for stationary
scenarios due to bulky implementation of the system. We therefore
leave mobility analysis for future work.

10 CONCLUSION
This paper takes a further step on employing wireless network in
active noise cancellation. It keeps the non-causal gain of wireless
look-ahead and, in the meanwhile, highlights the more pronounced
channel diversity gain of using multiple wireless reference micro-
phones than traditional on-headphone microphones, which greatly
improves the cancellation for multiple noise sources. The challenge
in adaptive filter convergence is addressed by frequency-domain
signal processing, which also opens up opportunities for user expe-
rience improvements in frequency-sensitive applications.
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APPENDIX
A CONVEXITY OF EQ. 14
Here we provide a proof for the convexity of the optimization
problem Eq. 14. We first simplify Eq. 13 as:

𝐸 (𝑓 ) = 𝑎0 (𝑓 ) +
𝑀∑︁
𝑗=1

𝑎 𝑗 (𝑓 )𝑊𝑗 (𝑓 ) = a𝐻W (19)

where the new variables are defined as:

𝑎0 (𝑓 ) ≜
𝑁∑︁
𝑖=1

𝑁𝑖 (𝑓 )𝐻 (𝑖 )𝑛𝑒 (𝑓 )

𝑎 𝑗 (𝑓 ) ≜ 𝑅 𝑗 (𝑓 )𝐻𝑠𝑒 (𝑓 ) 𝑗 = 1, . . . , 𝑀

a ≜
[
𝑎0 (𝑓 ) 𝑎1 (𝑓 ) · · · 𝑎𝑀 (𝑓 )

]𝐻
W ≜

[
1 𝑊1 (𝑓 ) · · · 𝑊𝑀 (𝑓 )

]𝑇
(20)

By the definition of convexity, for any W ∈ C, ∆W ∈ C and
𝜆 ∈ [0, 1], the loss L(W) = |a𝐻W|2 has to satisfy the following
inequality:

L(W + 𝜆∆W) ≤ (1 − 𝜆)L(W) + 𝜆L(W + ∆W) (21)

The left and right side of the inequality is computed as:
Left = L(W + 𝜆∆W)

= |W + 𝜆∆W|2

= [a𝐻 (W + 𝜆∆W)]𝐻 [a𝐻 (W + 𝜆∆W)]

= (W + 𝜆∆W)𝐻 aa𝐻 (W + 𝜆∆W)

= W𝐻 aa𝐻W + 𝜆W𝐻 aa𝐻∆W

+ 𝜆∆W𝐻 aa𝐻W + 𝜆2∆W𝐻 aa𝐻∆W

(22)

Right = (1 − 𝜆)L(W) + 𝜆L(W + ∆W)

= (1 − 𝜆) |a𝐻W|2 + 𝜆 |a𝐻 (W + ∆W) |2

= (1 − 𝜆) [a𝐻W]𝐻 [a𝐻W]

+ 𝜆[a𝐻 (W + ∆W)]𝐻 [a𝐻 (W + ∆W)]

= (1 − 𝜆)W𝐻 aa𝐻W + 𝜆(W𝐻 aa𝐻W

+W𝐻 aa𝐻∆W + ∆W𝐻 aa𝐻W + ∆W𝐻 aa𝐻∆W)

= W𝐻 aa𝐻W + 𝜆W𝐻 aa𝐻∆W

+ 𝜆∆W𝐻 aa𝐻W + 𝜆∆W𝐻 aa𝐻∆W

(23)

Subtracting Eq. 23 from Eq. 22,

Left − Right = (𝜆2 − 𝜆)∆W𝐻 aa𝐻∆W

= 𝜆(𝜆 − 1) |a𝐻∆W|2

≤ 0

(24)

Since Left ≤ Right always holds, Eq. 14 has a convex loss.
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