Many-to-Many Beam Alignment in Millimeter Wave Networks

Suraj Jog

Jiaming Wang, Junfeng Guan, Thomas Moon, Haitham Hassanieh, Romit Roy Choudhury

Bandwidth requirement of wireless applications is growing

VR and AR

VR and AR

VR and AR

Robotic Automation and Collaboration Tasks

Millimeter Wave Technology

Huge bandwidth available at millimeter wave frequencies

Millimeter Wave can support data rates of multi-Gbps

How to scale mmWave networks while maintaining multi-Gbps throughput per user?

Today's Networks: Broadcast

mmWave changes how wireless systems operate mmWave: Narrow-beam Antennas

mmWave changes how wireless systems operate

mmWave: Narrow-beam Antennas

mmWave changes how wireless systems operate mmWave: Narrow-beam Antennas

a

Past work focuses on quickly finding best alignment for a single communication link

[NSDI'17, SIGCOMM'18, INFOCOM'15, SIGMETRICS'15]

Multi-Link Beam Alignment is challenging!

Collision

1245

Clieft 2 rrier Sense does not work in directional networks

[MOBICOM'02, SIGCOMM'09]

BounceNet

A many-to-many beam alignment protocol that can enable many links to operate in parallel in confined spaces without interfering.

Many-to-Many Beam Alignment

What is the best alignment of beams that densely packs as many links as possible?

Many-to-Many Beam Alignment

What is the best alignment of beams that densely packs as many links as possible?

Leverage sparsity in the mmWave channel!

There are only a few number of paths between any TX and RX

There are only a few number of paths between any TX and RX

There are only a few number of paths between any TX and RX

Physical Signal Routing

Collision

Cannot Transmit at the same time

1.1.1

Can both Transmit at the same time

Physical Signal Routing enables more efficient beam alignment

Can both Transmit at the same time

Many-to-Many Beam Alignment Conflict Graphs

AP-Client Pair 1

AP-Client Pair 1

Many-to-Many Beam Alignment Conflict Graphs

AP-Client Pair 1

AP-Client Pair 1

Maximum Weighted Independent Set

Maximum Weighted Independent Set \rightarrow NP-Hard

Many-to-Many Beam Alignment

Key Idea

- Direct paths are highest data rate paths
 Prioritize routing along direct path
- Decouple routing along direct and indirect paths

Many-to-Many Beam Alignment Conflict Graphs

Direct Path Conflict Graphs

Many-to-Many Beam Alignment

Fairness among links

Create Multiple Many-to-Many Alignments

1. Maximize number of nodes that transmit simultaneously

2. Ensure each client its fair share on highest data rate path

Many-to-Many Beam Alignment

How to quickly learn the paths and interference patterns to adapt the alignment?

Require only O(N) scans to find all paths between every pair of nodes

Many-to-Many Beam Alignment

• How to quickly learn the paths and interference patterns to adapt the alignment?

• What is the best alignment of beams that densely packs as many links as possible?

BounceNet Evaluation

(c) 12° and 3° Antennas

(b) 24 GHz radios with phased arrays

BounceNet Evaluation

Evaluation Methodology

Compare Schemes

1. 802.11ad Standard

2. Baseline: Independent Alignment with Carrier Sense

Total Network Data Rate Phased Array

Total Network Data Rate 3 Degree

Data Rate of Worst Case Client

	Baseline	BounceNet	Gain
3 Degree			
12 Degree			
Phased Array			

BounceNet scales network throughput and ensures fairness, outperforming compare schemes

To conclude

 BounceNet enables many-to-many beam alignment by exploiting dense spatial reuse

2. mmWave opens up a new paradigm and requires rethinking of wireless network design